谷歌浏览器插件
订阅小程序
在清言上使用

090 Cardiomyoblast Caveolin Expression: Effects of Simulated Diabetes, Α-Linolenic Acid and Cell Signaling Pathways

American journal of physiology Cell physiology(2020)

引用 3|浏览19
暂无评分
摘要
Caveolins regulate myocardial substrate handling, survival signaling, and stress resistance; however, control of expression is incompletely defined. We test how metabolic features of type 2 diabetes (T2D), and modulation of cell signaling, influence caveolins in H9c2 cardiomyoblasts. Cells were exposed to glucose (25 vs. 5 mM), insulin (100 nM), or palmitate (0.1 mM), individually or combined, and the effects of adenylate cyclase (AC) activation (50 μM forskolin), focal adhesion kinase (FAK) or protein kinase C β2 (PKCβ2) inhibition (1 μM FAK inhibitor 14 or CGP-53353, respectively) or the polyunsaturated fatty acid (PUFA) α-linolenic acid (ALA; 10 μM) were tested. Simulated T2D (elevated glucose + insulin + palmitate) depressed caveolin-1 and -3 without modifying caveolin-2. Caveolin-3 repression was primarily palmitate dependent, whereas high glucose (HG) and insulin independently increased caveolin-3 (while reducing expression when combined). Differential control was evident: baseline caveolin-3 was suppressed by FAK/PKCβ2 and insensitive to AC activities, with baseline caveolin-1 and -2 suppressed by AC and insensitive to FAK/PKCβ2. Forskolin and ALA selectively preserved caveolin-3 in T2D cells, whereas PKCβ2 and FAK inhibition increased caveolin-3 under all conditions. Despite preservation of caveolin-3, ALA did not modify nucleosome content (apoptosis marker) or transcription of proinflammatory mediators in T2D cells. In summary, caveolin-1 and -3 are strongly repressed with simulated T2D, with caveolin-3 particularly sensitive to palmitate; intrinsic PKCβ2 and FAK activities depress caveolin-3 in healthy and stressed cells; ALA and AC activation and PKCβ2 inhibition preserve caveolin-3 under T2D conditions; and caveolin-3 changes with T2D and ALA appear unrelated to inflammatory signaling or extent of apoptosis.
更多
查看译文
关键词
cardiomyocyte,caveolins,diabetes,hyperglycemia,polyunsaturated fatty acid,saturated fat
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要