Irreversible Dynamics of Vortex Reconnections in Quantum Fluids.

PHYSICAL REVIEW LETTERS(2020)

引用 24|浏览5
暂无评分
摘要
We statistically study vortex reconnections in quantum fluids by evolving different realizations of vortex Hopf links using the Gross-Pitaevskii model. Despite the time reversibility of the model, we report clear evidence that the dynamics of the reconnection process is time irreversible, as reconnecting vortices tend to separate faster than they approach. Thanks to a matching theory devised concurrently by Proment and Krstulovic [Phys. Rev. Fluids 5, 104701 (2020)PLFHBR2469-990X10.1103/PhysRevFluids.5.104701], we quantitatively relate the origin of this asymmetry to the generation of a sound pulse after the reconnection event. Our results have the prospect of being tested in several quantum fluid experiments and, theoretically, may shed new light on the energy transfer mechanisms in both classical and quantum turbulent fluids.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要