谷歌浏览器插件
订阅小程序
在清言上使用

Object-based digital hologram segmentation and motion compensation.

OPTICS EXPRESS(2020)

引用 9|浏览11
暂无评分
摘要
Digital video holography faces two main problems: 1) computer-generation of holograms is computationally very costly, even more when dynamic content is considered; 2) the transmission of many high-resolution holograms requires large bandwidths. Motion compensation algorithms leverage temporal redundancies and can be used to address both issues by predicting future frames from preceding ones. Unfortunately, existing holographic motion compensation methods can only model uniform motions of entire 3D scenes. We address this limitation by proposing both a segmentation scheme for multi-object holograms based on Gabor masks and derive a Gabor mask-based multi-object motion compensation (GMMC) method for the compensation of independently moving objects within a single hologram. The utilized Gabor masks are defined in 4D space-frequency domain (also known as time-frequency domain or optical phase-space). GMMC can segment holograms containing an arbitrary number of mutually occluding objects by means of a coarse triangulation of the scene as side information. We demonstrate high segmentation quality (down to <= 0.01% normalized mean-squared error) with Gabor masks for scenes with spatial occlusions. The support of holographic motion compensation for arbitrary multi-object scenes can enable faster generation or improved video compression rates for dynamic digital holography. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
关键词
Computer-Generated Holography,Holographic Displays,Three-Dimensional Imaging,Integral Imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要