Construction of a ceRNA coregulatory network and screening of hub biomarkers for salt-sensitive hypertension.

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE(2020)

引用 7|浏览28
暂无评分
摘要
Salt-sensitive hypertension (SSH) is an independent risk factor for cardiovascular disease. The regulation of long non-coding RNAs, mRNAs and competing endogenous RNAs (ceRNAs) in the pathogenesis of SSH is uncertain. An RNA microarray was performed to discover SSH-associated differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs), and 296 DElncRNAs and 44 DEmRNAs were identified, and 247 DElncRNAs and 44 DEmRNAs among these RNAs were included in the coexpression network. The coregulatory network included 23 ceRNA loops, and six hub RNAs (lnc-ILK-8:1, lnc-OTX1-7:1, lnc-RCAN1-6:1, GIMAP8, SUV420H1 and PIGV) were identified for further population validation. The ceRNA correlations among lnc-OTX1-7:1, hsa-miR-361-5p and GIMAP8 were confirmed in SSH and SRH patients. A larger-sample validation confirmed that GIMAP8, SUV420H1 and PIGV were differentially expressed between the SSH and SRH groups. In addition, SUV420H1 was included in the SSH screening model, and the area under the curve of the model was 0.720 (95% CI: 0.624-0.816). Our study explored the transcriptome profiles of SSH and constructed a ceRNA network to help elucidate the mechanism of SSH. In addition, SUV420H1 was identified as a hub element that participates in SSH transcriptional regulation and as a potential biomarker for the early diagnosis of SSH.
更多
查看译文
关键词
biomarkers,competing endogenous RNA,long non-coding RNA,networks,salt-sensitive hypertension
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要