Nrf2 activation protects auditory hair cells from cisplatin-induced ototoxicity independent on mitochondrial ROS production.

Toxicology letters(2020)

引用 30|浏览27
暂无评分
摘要
Cisplatin is a well-known and commonly used chemotherapeutic agent. However, cisplatin-induced ototoxicity limits its clinical use. Previous studies have shown an important role of reactive oxygen species (ROS) accumulation in the pathogenesis of cisplatin-induced ototoxicity. In many cell types, the transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant response element (ARE) protect against oxidative stress by suppressing ROS. Here our results showed that cisplatin injury reduced Nrf2 expression and inhibited Nrf2 translocation in HEI-OC1 cells and Nrf2 activator tert-butylhydroquinone (TBHQ) rescued hair cells from cisplatin induced apoptosis by suppressing the total cellular ROS accumulation. Moreover, we found that decreased ROS accumulation induced by TBHQ didn't depend on mitochondrial derived ROS production, indicating that Nrf2 activation alleviated cisplatin induced oxidative stress and apoptosis through mitochondrial-independent ROS production. Therefore, we provide a potential strategy of prevention and treatment for cisplatin-induced ototoxicity by Nrf2 activation. In conclusion, Nrf2 activation protects auditory hair cells from cisplatin-induced ototoxicity through suppressing the total cellular ROS levels which arise from sources other than mitochondria.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要