Phase Transition Kinetics Of Doubly Thermoresponsive Poly(Sulfobetaine)-Based Diblock Copolymer Thin Films

MACROMOLECULES(2020)

引用 25|浏览10
暂无评分
摘要
The swelling and phase transition behavior upon increasing temperature of a doubly thermoresponsive diblock copolymer thin film in steps above the characteristic cloud points (CPs) of the blocks is studied. An upper critical solution temperature (UCST)-type zwitterionic poly(sulfobetaine), poly(N,N-dimethyl-N-(3-methacrylamidopropyl)-ammoniopropane sulfonate) (PSPP, CPUCST = 31.5 degrees C), is combined with a lower critical solution temperature (LCST)-type nonionic poly(N-isopropyl-/methacrylamide) (PNIPMAM, CPLCST = 49.5 degrees C) block. Using time-of-flight neutron reflectivity (ToF-NR), we observe the swelling in D2O vapor at a constant temperature of 20 degrees C, followed by two subsequent temperature jumps, from 20 to 40 degrees C (above CPUCST) and from 40 to 60 degrees C (above CPLCST). The observed response of the diblock copolymer films deviates from the aqueous solution behavior, which is mainly attributed to the increased polymer concentration. Temperature-induced changes in the thin-film nanostructure are investigated with ToF grazing-incidence small-angle neutron scattering (GISANS). Alterations in the chain conformation and hydrogen bonding are probed by Fourier transform infrared (FTIR) spectroscopy. The ionic SO3- groups (in the PSPP block) and the nonionic hydrophilic amide groups (in both blocks) are found to affect the mechanisms of D2O uptake and release significantly.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要