Designing Porous Materials to Resist Compression: Mechanical Reinforcement of a Zr-MOF with Structural Linkers

CHEMISTRY OF MATERIALS(2020)

引用 33|浏览11
暂无评分
摘要
The performance of metal-organic frameworks (MOFs) under mechanical stress is an important consideration in the design, synthesis, and application of MOF materials in both fundamental and industrial settings. We herein demonstrate that the bulk modulus (K = -V dP/dV) of a 4,8-connected Zr-based MOF, NU-901, comprised of Zr6O8 nodes and tetratopic pyrene linkers, increases systematically upon postsynthetic installation of a structural organic linker, 2,6-naphthalenedi-carboxylic acid (NDC), via solvent assisted linker incorporation. We calculated the bulk modulus, a measure of resistance to hydrostatic compression, of these modified NU-901 samples through in situ variable powder X-ray diffraction pressure measurements collected using a synchrotron source. As the amount of NDC incorporation into the NU-901 framework increased, the lattice strength of the framework also increased. This strategy of postsynthetic modification at the molecular level serves as a promising blueprint to tune the bulk mechanical properties of other MOFs by increasing the connnectivity of the secondary building unit. Furthermore, we envision this method may allow for structural reinforcement of other frameworks along one preferential axis or direction dependent on the desired application.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要