Device Model for Methylammonium Lead Iodide Perovskite With Experimentally Validated Ion Dynamics

ADVANCED ELECTRONIC MATERIALS(2020)

引用 19|浏览8
暂无评分
摘要
Being based on mixed ionic-electronic semiconductors, the operation of perovskite solar cells depends on many parameters. To develop an experimentally validated numerical device model, it is therefore necessary to isolate individual physical phenomena. To this end, the dynamics of ion motion in lead halide perovskites is investigated by measuring impedance spectra and the electric displacement as a function of frequency in dark. The displacement response is fully reproduced by a numerical device model that combines electronic and ionic conduction. For a quantitative description of the displacement, it is critical to consider the frequency-dependent apparent dielectric constant, the ion concentration and the ion diffusion coefficient. The numerical simulations enable to quantify the effect of ion motion and voltage scan speed on the electric field distribution in MAPbI(3) based devices, laying the foundations for an experimentally validated perovskite device model.
更多
查看译文
关键词
ion dynamics,perovskites,solar cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要