Tuning The Rigidity Of Silk Fibroin For The Transfer Of Highly Stretchable Electronics

ADVANCED FUNCTIONAL MATERIALS(2020)

引用 36|浏览14
暂无评分
摘要
The transfer of stretchable electrodes or devices from one substrate to another thin elastomer is challenging as the elastic stamp often yields a huge strain beyond the stretchability limit of the electrodes at the debonded interface. This will not happen if the stamp is rigid. However, a rigid material cannot be used as the substrate for stretchable electrodes. Herein, silk fibroin with tunable rigidity (Young's modulus can be changed from 134 kPa to 1.84 GPa by controlling the relative humidity) is used to transfer highly stretchable metal networks as highly conformable epidermal electrodes. The silk fibroin stamp is tuned to be rigid during peeling, and then be soft and highly stretchable as a substrate when laminated on moisturized human skin. In addition, the epidermal electrodes exhibit no skin irritation or inflammation after attaching for over 10 d. The high compliance results in a lower interface impedance and lower noises of the electrode in measuring electromyographic signals, compared with commercial Ag-AgCl gel electrodes. The strategy of tuning the rigidity at different stages of transfer is a general method that can be extended to the transfer of other stretchable electrodes and devices for epidermal electronics, human machine interfaces, and soft robotics.
更多
查看译文
关键词
epidermal electrodes, rigidity adjustment, silk fibroin, stretchable electronics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要