Characterization of the Interdependence Between the Light Output and Self-Heating of Gallium Nitride Light-Emitting Diodes

JOURNAL OF ELECTRONIC PACKAGING(2020)

引用 0|浏览28
暂无评分
摘要
With the advent of gallium nitride (GaN) as an enabling material system for the solid-state lighting industry, high-power and high-brightness light-emitting diodes (LEDs) with wavelengths ranging from near ultraviolet to blue are being manufactured as part of a tremendously large and ever-increasing market. However, device self-heating and the environment temperature significantly deteriorate the LED's optical performance. Hence, it is important to accurately quantify the LED's temperature and correlate its impact on optical performance. In this work, three different characterization methods and thermal simulation were used to measure and calculate the temperature rise of an InGaN/GaN LED, as a result of self-heating. Nanoparticle-assisted Raman thermometry was used to measure the LED mesa surface temperature. A transient Raman thermometry technique was utilized to investigate the transient thermal response of the LED. It was found that under a 300 mW input power condition, self-heating is negligible for an input current pulse width of 1ms or less. The temperature measured using nanoparticle-assisted Raman thermometry was compared with data obtained by using the forward voltage method (FVM) and infrared (IR) thermal microscopy. The IR and Raman measurement results were in close agreement whereas the data obtained from the widely accepted FVM underestimated the LED temperature by 5-10%. It was also observed that an increase in environment temperature from 25 degrees C to 100 degrees C would degrade the LED optical power output by 12%.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要