Classifying Global State Preparation Via Deep Reinforcement Learning

MACHINE LEARNING-SCIENCE AND TECHNOLOGY(2021)

引用 22|浏览49
暂无评分
摘要
Quantum information processing often requires the preparation of arbitrary quantum states, such as all the states on the Bloch sphere for two-level systems. While numerical optimization can prepare individual target states, they lack the ability to find general control protocols that can generate many different target states. Here, we demonstrate global quantum control by preparing a continuous set of states with deep reinforcement learning. The protocols are represented using neural networks, which automatically groups the protocols into similar types, which could be useful for finding classes of protocols and extracting physical insights. As application, we generate arbitrary superposition states for the electron spin in complex multi-level nitrogen-vacancy centers, revealing classes of protocols characterized by specific preparation timescales. Our method could help improve control of near-term quantum computers, quantum sensing devices and quantum simulations.
更多
查看译文
关键词
machine learning, quantum control, NV centers, quantum mechanics, deep reinforcement learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要