谷歌浏览器插件
订阅小程序
在清言上使用

A Study on Microstructure, Residual Stresses and Stress Corrosion Cracking of Repair Welding on 304 Stainless Steel: Part I-Effects of Heat Input.

Materials(2020)

引用 10|浏览3
暂无评分
摘要
In this paper, the effect of repair welding heat input on microstructure, residual stresses, and stress corrosion cracking (SCC) sensitivity were investigated by simulation and experiment. The results show that heat input influences the microstructure, residual stresses, and SCC behavior. With the increase of heat input, both the δ-ferrite in weld and the average grain width decrease slightly, while the austenite grain size in the heat affected zone (HAZ) is slightly increased. The predicted repair welding residual stresses by simulation have good agreement with that by X-ray diffraction (XRD). The transverse residual stresses in the weld and HAZ are gradually decreased as the increases of heat input. The higher heat input can enhance the tensile strength and elongation of repaired joint. When the heat input was increased by 33%, the SCC sensitivity index was decreased by more than 60%. The macroscopic cracks are easily generated in HAZ for the smaller heat input, leading to the smaller tensile strength and elongation. The larger heat input is recommended in the repair welding in 304 stainless steel.
更多
查看译文
关键词
304 stainless steel,repair welding,heat input,residual stresses,stress corrosion cracking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要