Two-Dimensional Extreme Skin Depth Engineering For Cmos Photonics

arxiv(2021)

引用 6|浏览68
暂无评分
摘要
Extreme skin depth engineering (e-skid) can be applied to integrated photonics to manipulate the evanescent field of a waveguide. Here we demonstrate that e-skid can be implemented in two directions in order to deterministically engineer the evanescent wave allowing for dense integration with enhanced functionalities. In particular, by increasing the skin depth, we enable the creation of two-dimensional (2D) e-skid directional couplers with large gaps and operational bandwidth. Here we experimentally validate 2D e-skid for integrated photonics in a complementary metal-oxide semiconductor (CMOS) photonics foundry and demonstrate strong coupling with a gap of 1.44 mu m. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要