Role of special AT-rich sequence-binding protein 2 in the osteogenesis of dental mesenchymal stem cells.

STEM CELLS AND DEVELOPMENT(2020)

引用 4|浏览22
暂无评分
摘要
Dental mesenchymal stem cells (MSCs) are recognized as a critical factor in repair of defective craniofacial bone owing to the multiple differentiation potential, the ability to regenerate distinct tissues, and the advantage that they can be easily obtained by relatively noninvasive procedures. Special AT-rich sequence-binding protein 2 (SATB2) is a nuclear matrix protein, involved in chromatin remodeling and transcriptional regulation, and has been reported to be as a positive regulator of osteoblast differentiation, bone formation, and bone regeneration in MSCs. In this study, we systematically investigated the capability of SATB2 to promote the osteogenic differentiation of periodontal ligament stem cells (PDLSCs), dental pulp stem cells (DPSCs), and stem cells from human exfoliated deciduous teeth (SHED). RNA-seq analysis and quantitative real-time PCR (RT-PCR) revealed that genes regulating osteogenic differentiation were differentially expressed among three cell types and SATB2 was found to be expressed at a relatively high level. When the three cell types overexpressed SATB2 with AdSATB2 infection, alkaline phosphatase (ALP) staining, ALP activity, Alizarin Red S staining, and quantification tended to increase with an increasing infection rate. It showed opposite results after infection with AdsiSATB2. RNA-seq analysis indicated that the expression of downstream osteogenic genes was affected by AdSATB2 infection and quantitative RT-PCR confirmed that nine osteogenic genes (Spp1,Sema7a,Atf4,Ibsp,Col1a1,Sp7,Igfbp3,Dlx3, andAlpl) were upregulated, to various extents, following SATB2 overexpression. In addition, quantitative PCR results indicated that SATB2 affected the expression of MSC markers. These results suggested an important role of SATB2 in the osteogenesis of PDLSCs, DPSCs, and SHED. Further research is warranted to investigate SATB2-mediated regulation of osteogenic differentiation and to evaluate the therapeutic use of SATB2 for the regeneration of defective craniofacial bone tissue.
更多
查看译文
关键词
dental mesenchymal stem cells,special AT-rich sequence-binding protein 2,osteogenesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要