Modeling the acoustic repertoire of Cuvier's beaked whale clicks.

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA(2020)

引用 4|浏览15
暂无评分
摘要
This paper investigates the evolution of spectral properties observed in Cuvier's beaked whale (Ziphius cavirostris) click trains recorded by fixed hydrophones in the Gulf of Mexico. In the context of deep water and high-frequency sounds and observed inter-click intervals, the authors assumed that the main effect responsible for the modification of the spectral content between adjacent clicks in the same click train is the source beam pattern. The spectral structure is studied by using the Wigner-Ville time-frequency distribution and is compared with the conventional Fourier spectrogram. The results show that the observed Cuvier's beaked whale clicks are a superposition of upsweep and downsweep chirps, unlike the currently accepted upsweep only structure of beaked whale clicks in bioacoustics literature. The spectral structure variations simulated by using a flat circular piston model as a beam pattern transmission model are consistent with the evolution of spectral click properties observed in experimental data. A better understanding of the properties of observed echolocation clicks of Cuvier's beaked whales will provide useful information for click annotations and, therefore, will contribute to improving accuracy of detecting, classifying, tracking, and estimating the density of Cuvier's beaked whales.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要