Network size and weights size for memorization with two-layers neural networks

arxiv(2020)

引用 19|浏览100
暂无评分
摘要
In 1988, Eric B. Baum showed that two-layers neural networks with threshold activation function can perfectly memorize the binary labels of $n$ points in general position in $\mathbb{R}^d$ using only $\ulcorner n/d \urcorner$ neurons. We observe that with ReLU networks, using four times as many neurons one can fit arbitrary real labels. Moreover, for approximate memorization up to error $\epsilon$, the neural tangent kernel can also memorize with only $O\left(\frac{n}{d} \cdot \log(1/\epsilon) \right)$ neurons (assuming that the data is well dispersed too). We show however that these constructions give rise to networks where the magnitude of the neurons' weights are far from optimal. In contrast we propose a new training procedure for ReLU networks, based on complex (as opposed to real) recombination of the neurons, for which we show approximate memorization with both $O\left(\frac{n}{d} \cdot \frac{\log(1/\epsilon)}{\epsilon}\right)$ neurons, as well as nearly-optimal size of the weights.
更多
查看译文
关键词
memorization,neural networks,network size,two-layers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要