CE-MS metabolic profiling of volume-restricted plasma samples from an acute mouse model for epileptic seizures to discover potentially involved metabolomic features.

Talanta(2020)

引用 12|浏览24
暂无评分
摘要
Currently, a high variety of analytical techniques to perform metabolomics is available. One of these techniques is capillary electrophoresis coupled to mass spectrometry (CE-MS), which has emerged as a rather strong analytical technique for profiling polar and charged compounds. This work aims to discover with CE-MS potential metabolic consequences of evoked seizures in plasma by using a 6Hz acute corneal seizure mouse model. CE-MS is an appealing technique because of its capability to handle very small sample volumes, such as the 10 μL plasma samples obtained using capillary microsampling in this study. After liquid-liquid extraction, the samples were analyzed with CE-MS using low-pH separation conditions, followed by data analysis and biomarker identification. Both electrically induced seizures showed decreased values of methionine, lysine, glycine, phenylalanine, citrulline, 3-methyladenine and histidine in mice plasma. However, a second provoked seizure, 13 days later, showed a less pronounced decrease of the mean concentrations of these plasma metabolites, demonstrated by higher fold change ratios. Other obtained markers that can be related to seizure activities based on literature data, are isoleucine, serine, proline, tryptophan, alanine, arginine, valine and asparagine. Most amino acids showed relatively stable plasma concentrations between the basal levels (Time point 1) and after the 13-day wash-out period (Time point 3), which suggests its effectiveness. Overall, this work clearly demonstrated the possibility of profiling metabolite consequences related to seizure activities of an intrinsically low amount of body fluid using CE-MS. It would be useful to investigate and validate, in the future, the known and unknown metabolites in different animal models as well as in humans.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要