External Quantum Efficiency Exceeding 24% with CIE y Value of 0.08 using a Novel Carbene-Based Iridium Complex in Deep-Blue Phosphorescent Organic Light-Emitting Diodes.

ADVANCED MATERIALS(2020)

引用 69|浏览38
暂无评分
摘要
Deep-blue triplet emitters remain far inferior to standard red and green triplet emitters in terms of exhibiting high-color-purity Commission International de l'eclairage (CIE) y values of <= 0.1, external quantum efficiencies (EQEs), and high electroluminescent brightnesses in phosphorescent organic light-emitting diodes. In fact, no deep-blue triplet emitter with color purity and high device performance has previously been reported. In this study, a deep-blue triplet emitter, mer-tris(N-phenyl, N-benzyl-pyridoimidazol-2-yl)iridium(III) (mer-Ir1) is developed, which meets the requirements of the National Television System Committee (NTSC) CIE(x, y) coordinates of (0.149, 0.085) with an extremely high EQE of 24.8% and maximum brightness (L-max) of 6453 cd m(-2), by a device with a 40 vol% doping ratio. Moreover, another device demonstrates an EQE(max) of 21.3%, an L-max of 5247 cd m(-2), and CIE(x, y) coordinates of (0.151, 0.086) at a 30 vol% doping ratio. This is the first report of a high-performance, deep-blue phosphor, carbene-based Ir(III) complex device with outstanding CIE(x, y) color coordinates and a high EQE. The results of this study indicate that the novel dopant mer-Ir1 is a promising candidate for reducing power consumption in display applications.
更多
查看译文
关键词
carrier balance,concentration quenching,deep-blue phosphorescence,N-heterocyclic carbene ligands,organic light-emitting diodes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要