Persistence-Speed Coupling Enhances The Search Efficiency Of Migrating Immune Cells

PHYSICAL REVIEW LETTERS(2020)

引用 22|浏览5
暂无评分
摘要
Migration of immune cells within the human body allows them to fulfill their main function of detecting pathogens. We present experimental evidence showing the optimality of the search strategy of these cells, which is of crucial importance to achieve an efficient immune response. We find that the speed and directional persistence of migrating dendritic cells in our in vitro experiments are highly correlated, which enables them to reduce their search time. We introduce theoretically a new class of random search optimization problems by minimizing the mean first-passage time (MFPT) with respect to the strength of the coupling between influential parameters. We derive an analytical expression for the MFPT in a confined geometry and verify that the correlated motion enhances the search efficiency if the mean persistence length is sufficiently shorter than the confinement size. Our correlated search optimization approach provides an efficient searching recipe and predictive power in a broad range of correlated stochastic processes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要