谷歌浏览器插件
订阅小程序
在清言上使用

A Quantum Dot Nanobiosensor for Rapid Detection of Botulinum Neurotoxin Serotype E

ACS sensors(2020)

引用 11|浏览12
暂无评分
摘要
Botulinum neurotoxins (BoNTs) are potent toxins produced by Clostridium bacteria that are responsible for the illness botulism and are listed as bioterrorism agents. BoNT serotype E (BoNT/E) is one of four BoNT serotypes that cause human botulism and is the second most frequent cause of foodborne botulism. Rapid detection and discrimination of BoNT serotypes implicated in human disease are critical for ensuring timely treatment of patients and identifying sources of toxins, but there have been few reported detection methods for BoNT/E and even fewer methods usable for BoNT serotyping. We report a nanobiosensor based on Förster resonance energy transfer (FRET) between semiconductor nanocrystals (quantum dots, QDs) and dark quencher-labeled peptide probes to detect biologically active BoNT/E in aqueous media. The peptide probes contain a specific cleavage site for active BoNT/E. QD photoluminescence, which changes intensity due to FRET when the peptide probe is cleaved, was used to indicate toxin presence and quantity. The detection of a BoNT/E light chain (LcE) and holotoxin was observed within 3 h. The limits of detection were 0.02 and 2 ng/mL for LcE and holotoxin, respectively. The nanobiosensor shows good specificity toward the target in tests with nontarget BoNT serotypes. The high sensitivity, simple operation, short detection time, and ability to be used in parallel with probes developed for other BoNT serotypes indicate that the nanobiosensor will be useful for rapid BoNT/E detection and serotype discrimination in food analysis.
更多
查看译文
关键词
botulinum neurotoxin E,nanobiosensor,quantum dot,Forster resonance energy transfer (FRET),rapid detection,food safety
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要