Toluene Adsorption by Mesoporous Silicas with Different Textural Properties: A Model Study for VOCs Retention and Water Remediation.

Materials (Basel, Switzerland)(2020)

引用 5|浏览19
暂无评分
摘要
In this work, different mesoporous silicas were studied as potential sorbents for toluene, selected as a model molecule of aromatic organic fuel-based pollutants. Three siliceous materials with different textural and surface properties (i.e., fumed silica and mesoporous Santa Barbara Amorphous (SBA)-15 and Mobil Composition of matter (MCM)-41 materials) were considered and the effect of their physico-chemical properties on the toluene adsorption process was studied. In particular, FT-IR spectroscopy was used to qualitatively study the interactions between the toluene molecule and the surface of silicas, while volumetric adsorption analysis allowed the quantitative determination of the toluene adsorption capacity. The combined use of these techniques revealed that textural properties of the sorbents, primarily porosity, are the driving forces that control the adsorption process. Considering that, under real conditions of usage, the sorbents are soaked in water, their hydrothermal stability was also investigated and toluene adsorption by both the gas and aqueous phase on hydrothermally pre-treated samples was studied. The presence of ordered porosity, together with the different pore size distribution and the amount of silanol groups, strongly affected the adsorption process. In toluene adsorption from water, SBA-15 performed better than MCM-41.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要