Deepqtmt: A Deep Learning Approach For Fast Qtmt-Based Cu Partition Of Intra-Mode Vvc

Tianyi Li,Mai Xu, Runzhi Tang

IEEE TRANSACTIONS ON IMAGE PROCESSING(2021)

引用 124|浏览25
暂无评分
摘要
Versatile Video Coding (VVC), as the latest standard, significantly improves the coding efficiency over its predecessor standard High Efficiency Video Coding (HEVC), but at the expense of sharply increased complexity. In VVC, the quad-tree plus multi-type tree (QTMT) structure of the coding unit (CU) partition accounts for over 97% of the encoding time, due to the brute-force search for recursive rate-distortion (RD) optimization. Instead of the brute-force QTMT search, this paper proposes a deep learning approach to predict the QTMT-based CU partition, for drastically accelerating the encoding process of intra-mode VVC. First, we establish a large-scale database containing sufficient CU partition patterns with diverse video content, which can facilitate the data-driven VVC complexity reduction. Next, we propose a multi-stage exit CNN (MSE-CNN) model with an early-exit mechanism to determine the CU partition, in accord with the flexible QTMT structure at multiple stages. Then, we design an adaptive loss function for training the MSE-CNN model, synthesizing both the uncertain number of split modes and the target on minimized RD cost. Finally, a multi-threshold decision scheme is developed, achieving a desirable trade-off between complexity and RD performance. The experimental results demonstrate that our approach can reduce the encoding time of VVC by 44.65%similar to 66.88% with a negligible Bjontegaard delta bit-rate (BD-BR) of 1.322%similar to 3.188%, significantly outperforming other state-of-the-art approaches.
更多
查看译文
关键词
Versatile video coding, complexity reduction, coding unit partition, deep learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要