Parallel propagating electromagnetic waves in magnetized quantum electron plasmas with finite temperature.

PHYSICAL REVIEW E(2020)

引用 1|浏览6
暂无评分
摘要
We studied parallel propagating electromagnetic waves in a magnetized quantum electron plasma of finite temperature, as an extension of our previous study on a zero temperature plasma. We obtained simple analytic dispersion relations in the long wavelength limit that included the thermal effect as correction terms to the zero temperature results. As in the zero temperature case, the lower branch of the R wave showed significant damping and became ill-defined at short wavelengths. Quantum effects seemed to give qualitative changes, such as the appearance of anomalous dispersion regions, to the classical dispersion relations when v(F)/v(th) <= 0.2 for a set of exemplary parameters of v(F) = 0.1c and omega(ce)/omega(pe) = 0.05 was used. We also noted that introduction of the Planck constant in the quantum Vlasov equation changed the shape of the anomalous dispersion region qualitatively, by forming a normal dispersion region in the middle of the original single broad anomalous dispersion region.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要