谷歌浏览器插件
订阅小程序
在清言上使用

Structural Integrity of the Alveolar–Capillary Barrier in Cynomolgus Monkeys Challenged with Fully Virulent and Toxin-Deficient Strains of Bacillus Anthracis

AMERICAN JOURNAL OF PATHOLOGY(2020)

引用 7|浏览1
暂无评分
摘要
Inhalational anthrax, a disease caused by inhaling Bacillus anthracis spores, leads to respiratory distress, vascular leakage, high-level bacteremia, and often death within days. Anthrax lethal toxin and edema toxin, which are composed of protective antigen (PA) plus either lethal factor (LF) or edema factor (EF), respectively, play an important yet incompletely defined role in the pulmonary pathophysiology. To better understand their contribution, we examined the structural integrity of the alveolar-capillary barrier in archival formalin-fixed lungs of cynomolgus monkeys challenged with the fully virulent B. anthracis Ames wild-type strain or the isogenic toxin-deficient mutants ΔEF, ΔLF, and ΔPA. Pulmonary spore challenge with the wild-type strain caused high mortality, intra-alveolar hemorrhages, extensive alveolar septal sequestration of bacteria and neutrophils, diffuse destabilization of epithelial and endothelial junctions, increased markers of coagulation and complement activation (including tissue factor and C5a), and multifocal intra-alveolar fibrin deposition. ΔEF challenge was lethal and showed similar alveolar-capillary alterations; however, intra-alveolar hemorrhages, bacterial deposition, and markers of coagulation or complement were absent or markedly lower. In contrast, ΔLF or ΔPA challenges were nonlethal and showed no signs of alveolar bacterial deposition or alveolar-capillary changes. These findings provide evidence that lethal toxin plays a determinative role in bacterial dissemination and alveolar-capillary barrier dysfunction, and edema toxin may significantly exacerbate pulmonary pathologies in a systemic infection.
更多
查看译文
关键词
Inhalational Anthrax
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要