Band Bending And Valence Band Quantization At Line Defects In Mos2

ACS NANO(2020)

引用 25|浏览26
暂无评分
摘要
The variation of the electronic structure normal to 1D defects in quasi-freestanding MoS2, grown by molecular beam epitaxy, is investigated through high resolution scanning tunneling spectroscopy at 5 K. Strong upward bending of valence and conduction bands toward the line defects is found for the 4 vertical bar 4E mirror twin boundary and island edges but not for the 4 vertical bar 4P mirror twin boundary. Quantized energy levels in the valence band are observed wherever upward band bending takes place. Focusing on the common 4 vertical bar 4E mirror twin boundary, density functional theory calculations give an estimate of its charging, which agrees well with electrostatic modeling. We show that the line charge can also be assessed from the filling of the boundary-localized electronic band, whereby we provide a measurement of the theoretically predicted quantized polarization charge at MoS2 mirror twin boundaries. These calculations elucidate the origin of band bending and charging at these 1D defects in MoS2. The 4 vertical bar 4E mirror twin boundary not only impairs charge transport of electrons and holes due to band bending, but holes are additionally subject to a potential barrier, which is inferred from the independence of the quantized energy landscape on either side of the boundary.
更多
查看译文
关键词
band bending, scanning tunnelling spectroscopy, MoS2, polarization charge, mirror twin boundary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要