Mirna-145-5p Prevents Differentiation Of Oligodendrocyte Progenitor Cells By Regulating Expression Of Myelin Gene Regulatory Factor

JOURNAL OF CELLULAR PHYSIOLOGY(2021)

引用 13|浏览4
暂无评分
摘要
The roles of specific microRNAs (miRNA) in oligodendrocyte (OL) differentiation have been studied in depth. However, miRNAs in OL precursors and oligodendrocyte progenitor cells (OPCs) have been less extensively investigated. MiR-145-5p is highly expressed in OPCs relative to differentiating OLs, suggesting this miRNA may serve a function specifically in OPCs. Knockdown of miR-145-5p in primary OPCs led to spontaneous differentiation, as evidenced by an increased proportion of MAG(+)cells, increased cell ramification, and upregulation of multiple myelin genes includingMYRF, TPPP, andMAG, and OL cell cycle exit markerCdkn1c. Supporting this transition to a differentiating state, proliferation was reduced in miR-145-5p knockdown OPCs. Further, knockdown of miR-145-5p in differentiating OLs showed enhanced differentiation, with increased branching, myelin membrane production, and myelin gene expression. We identified several OL-specific genes targeted by miR-145-5p that exhibited upregulation with miR-145-5p knockdown, including myelin gene regulatory factor (MYRF), that could be regulating the prodifferentiation phenotype in both miR-145 knockdown OPCs and OLs. Indeed, spontaneous differentiation with knockdown of miR-145-5p was fully rescued by concurrent knockdown ofMYRF. However, proliferation rate was only partially rescued withMYRFknockdown, and overexpression of miR-145-5p in OPCs increased proliferation rate without affecting expression of already lowly expressed differentiation genes. Taken together, these data suggest that in OPCs miR-145-5p both prevents differentiation at least in part by preventing expression ofMYRFand promotes proliferation via as-yet-unidentified mechanisms. These findings clarify the need for differential regulation of miR-145-5p between OPCs and OLs and may have further implications in demyelinating diseases such as multiple sclerosis where miR-145-5p is dysregulated.
更多
查看译文
关键词
microRNA, multiple sclerosis, MYRF, oligodendrocyte differentiation, oligodendrocyte progenitor cell
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要