Single Photon Ionization Mass spectrometry Using a Vacuum Ultraviolet Femtosecond Laser.

JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY(2020)

引用 4|浏览7
暂无评分
摘要
The wavelength of a femtosecond Ti:sapphire laser (TS, 800 nm) was converted into the ultraviolet (UV, 200 nm) using three beta-barium borate crystals (beta-BaB2O4) for frequency doubling and subsequent mixing. The UV pulse was further converted into the vacuum ultraviolet (VUV, 185 nm) based on four-wave Raman mixing, in which a two-color pump beam consisting of the fundamental beam (800 nm) of the TS and the signal beam of an optical parametric amplifier (1200 nm) pumped by the TS was focused onto a capillary waveguide filled with hydrogen gas for molecular phase modulation and the single-color UV probe beam (200 nm) was then focused onto the waveguide for frequency modulation to generate anti-Stokes and high-order Stokes Raman sidebands at wavelengths of 185 and 218-267 nm, respectively. The efficiency of conversion from the UV (200 nm) to the VUV (185 nm) was 6%. The ionization energy was calculated for 13 amino polycyclic aromatic hydrocarbons using density functional theory, since they are associated with the development of occupational bladder cancers. The values calculated by the B3LYP/cc-pVDZ and.B97Xd/cc-pVTZ methods were 6.24-7.14 eV (199-174 nm) and 6.41-7.35 eV (194-169 nm), respectively. A sample containing a mixture of 9-aminoanthracene, 3-aminofluoranthene, and 1-aminopyrene was separated by gas chromatography (GC), and the eluents were ionized with the VUV pulse (0.015 mu J) in mass spectrometry (MS). The analytes were observed on a two-dimensional display of GC/MS, and the detection limit obtained by single-photon ionization of 3-aminofluoranthene was 1 ng/mu L.
更多
查看译文
关键词
single-photon ionization,time-of-flight mass spectrometry,vacuum ultraviolet,femtosecond laser,amino polycyclic aromatic hydrocarbon,nonlinear optics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要