Non-local opto-electrical spin injection and detection in germanium at room temperature

arxiv(2016)

引用 18|浏览0
暂无评分
摘要
Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a "source" and a well separated "drain". The next generation electronics may operate on the spin of carriers instead of their charge and germanium appears as the best hosting material to develop such a platform for its compatibility with mainstream silicon technology and the long electron spin lifetime at room temperature. Moreover, the energy proximity between the direct and indirect bandgaps allows for optical spin injection and detection within the telecommunication window. In this letter, we demonstrate injection of pure spin currents (i.e. with no associated transport of electric charges) in germanium, combined with non-local spin detection blocks at room temperature. Spin injection is performed either electrically through a magnetic tunnel junction (MTJ) or optically, exploiting the ability of lithographed nanostructures to manipulate the distribution of circularly-polarized light in the semiconductor. Pure spin current detection is achieved using either a MTJ or the inverse spin-Hall effect (ISHE) across a platinum stripe. These results broaden the palette of tools available for the realization of opto-spintronic devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要