谷歌浏览器插件
订阅小程序
在清言上使用

Mechanistic Insights into Photocatalyzed H2 Dissociation on Au Clusters.

Journal of the American Chemical Society(2020)

引用 48|浏览17
暂无评分
摘要
Localized surface plasmon resonances (LSPRs) have attracted much recent attention for their potential in promoting chemical reactions with light. However, the mechanism of LSPR-induced chemical reactions is still not clear, even for H2 dissociation on metal nanoparticles. In this work, we investigate the mechanism for photoinduced H2 dissociation using a simple H2@Au6 model. Our time-dependent density functional theory calculations indicate that the initial excitation is largely restricted to the metal cluster, involving intraband excitation that produces hot electrons (HEs). However, diabatization via overlapping orbitals reveals two types of nested electronic states, one involving excitations of the metallic electrons, namely, the HE states, and the other concerned with charge transfer (CT) to the adsorbate antibonding σ* orbital. Dissociation of H2 thus takes place by transitions from the former to the latter. Quantum dynamics simulations on the diabatic CT states suggest rapid dissociation of H2, while no such dissociation occurs on diabatic HE states. Our research provides a clear physical picture of photoinduced H2 dissociation on Au clusters, which has important implications in plasmonic facilitated photocatalysis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要