The Runx1/Notch1 Signaling Pathway Participates in M1/M2 Microglia Polarization in a Mouse Model of Temporal Lobe Epilepsy and in BV-2 Cells

NEUROCHEMICAL RESEARCH(2020)

引用 14|浏览11
暂无评分
摘要
Microglial activation and phenotypic shift play vital roles in many neurological diseases. Runt-related transcription factor-1 (Runx1), which is localized on microglia, inhibits amoeboid microglial proliferation. Preliminary data have indicated that the interaction of Runx1 with the Notch1 pathway affects the hemogenic endothelial cell shift. However, little is known about the effect of Runx1 and the Notch1 signaling pathway on the phenotypic shift of microglia during neuroinflammation, especially in temporal lobe epilepsy (TLE). A mouse model of TLE induced by pilocarpine and the murine microglia cell line BV-2 were used in this study. The proportion of microglia was analyzed using flow cytometry. Western blot (WB) analysis and quantitative real-time polymerase chain reaction were used to analyze protein and gene transcript levels, respectively. Immunohistochemistry was used to show the distribution of Runx1. In the present study, we first found that in a male mouse model of TLE induced by pilocarpine, flow cytometry revealed a time-dependent M2-to-M1 microglial transition after status epilepticus. The dynamic expression patterns of Runx1 and the downstream Notch1/Jagged1/Hes5 signaling pathway molecules in the epileptic hippocampus were determined. Next, Runx1 knockdown by small interfering RNA in BV-2 cells strongly promoted an M2-to-M1 microglial phenotype shift and inhibited Notch1/Jagged1/Hes5 pathway expression. In conclusion, Runx1 may play a critical role in the M2-to-M1 microglial phenotype shift via the Notch1 signaling pathway during epileptogenesis in a TLE mouse model and in BV-2 cells.
更多
查看译文
关键词
Runx1,Notch1 signaling,Microglia,Epileptogenesis,Temporal lobe epilepsy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要