Online Testbed for Evaluating Vulnerability of Deep Learning Based Power Grid Load Forecasters

2020 8th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems(2020)

引用 0|浏览48
暂无评分
摘要
Modern electric grids that integrate smart grid technologies require different approaches to grid operations. There has been a shift towards increased reliance on distributed sensors to monitor bidirectional power flows and machine learning based load forecasting methods (e.g., using deep learning). These methods are fairly accurate under normal circumstances, but become highly vulnerable to stealthy adversarial attacks that could be deployed on the load forecasters. This paper provides a novel model-based Testbed for Simulation-based Evaluation of Resilience (TeSER) that enables evaluating deep learning based load forecasters against stealthy adversarial attacks. The testbed leverages three existing technologies, viz. DeepForge: for designing neural networks and machine learning pipelines, GridLAB-D: for electric grid distribution system simulation, and WebGME: for creating web-based collaborative metamodeling environments. The testbed architecture is described, and a case study to demonstrate its capabilities for evaluating load forecasters is provided.
更多
查看译文
关键词
power grid,load forecasting,machine learning,security,resilience,adversarial attacks,model-based testbed
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要