Adsorption Of Arsenic Ions Transforms Surface Reactivity Of Engineered Cerium Oxide Nanoparticles

ENVIRONMENTAL SCIENCE & TECHNOLOGY(2020)

引用 16|浏览6
暂无评分
摘要
Cerium oxide (CeO2) nanoparticles (NPs) are massively used as abrasives in the chemical and mechanical polishing (CMP), an essential process to manufacture semiconductor wafers. The CMP process for arsenide-based semiconductor materials produces wastewater with co-occurring arsenic (As) ions and CeO2 NPs. We found that CeO2 NPs adsorbed both arsenite (As(III)) and arsenate (As(V)) ions and the adsorption isotherms suggested different adsorption energies and Ce(IV)4-11.-Ce(111) capacities of the two species. Applying the ferric reducing ability for nanoparticle assay, we revealed that the adsorbed As(III) and As(V) each reduced CeO2 NP surface reactivity but followed different mechanisms. The adsorbed As(III) ions below a critical coverage (110 mmol/kg) increased occupation of Ce 4f orbitals and thus reduced electron mobility of the original CeO2 NPs. The adsorbed As(V) ions withdrew electrons from Ce 4f orbitals and likely became oxidizing agents that greatly inhibited the original surface reducing ability. Electron paramagnetic resonance analysis further revealed that adsorbed As(III) and As(V) ions decreased the propensity of CeO2. NPs to produce reactive oxygen species. This work highlights the importance of examining NPs in their post-use phases in which surface reactivity and hazard potential can be greatly altered by chemical exposure history and NP surface transformations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要