Interaction Of Hydrogen With Actinide Dioxide (011) Surfaces

JOURNAL OF CHEMICAL PHYSICS(2020)

引用 4|浏览8
暂无评分
摘要
The corrosion and oxidation of actinide metals, leading to the formation of metal-oxide surface layers with the catalytic evolution of hydrogen, impacts the management of nuclear materials. Here, the interaction of hydrogen with actinide dioxide (AnO(2), An = U, Np, or Pu) (011) surfaces by Hubbard corrected density functional theory (PBEsol+U) has been studied, including spin-orbit interactions and non-collinear 3k anti-ferromagnetic behavior. The actinide dioxides crystalize in the fluorite-type structure, and although the (111) surface dominates the crystal morphology, the (011) surface energetics may lead to more significant interaction with hydrogen. The dissociative adsorption of hydrogen on the UO2 (0.44 eV), NpO2 (-0.47 eV), and PuO2 (-1.71 eV) (011) surfaces has been calculated. It is found that hydrogen dissociates on the PuO2 (011) surface; however, UO2 (011) and NpO2 (011) surfaces are relatively inert. Recombination of hydrogen ions is likely to occur on the UO2 (011) and NpO2 (011) surfaces, whereas hydroxide formation is shown to occur on the PuO2 (011) surface, which distorts the surface structure.
更多
查看译文
关键词
actinide dioxide,hydrogen,surfaces
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要