谷歌浏览器插件
订阅小程序
在清言上使用

Potent and Specific Antibacterial Activity Against Escherichia Coli O157:H7 and Methicillin Resistant Staphylococcus Aureus (MRSA) of G17 and G19 Peptides Encapsulated into Poly-Lactic-Co-Glycolic Acid (PLGA) Nanoparticles.

Antibiotics(2020)

引用 22|浏览17
暂无评分
摘要
Antimicrobial peptides constitute an excellent alternative against conventional antibiotics because of their potent antimicrobial spectrum, unspecific action mechanism and low capacity to produce antibiotic resistance. However, a potential use of these biological molecules as therapeutic agents is threatened by their low stability and susceptibility to proteases. In order to overcome these limitations, encapsulation in biocompatible polymers as poly-lactic-glycolic-acid (PLGA) is a promising alternative for increasing their stability and bioavailability. In this work, the effect of new synthetic antimicrobial peptides GIBIM-P5S9K (G17) and GAM019 (G19) encapsulated on PLGA and acting against methicillin resistant Staphylococus aureus (MRSA) and Escherichia coli O157:H7 was studied. PLGA encapsulation allowed us to load around 7 µg AMPs/mg PLGA with an efficiency of 90.5%, capsule sizes around 290 nm and positive charges. Encapsulation improved antimicrobial activity, decreasing MIC50 from 1.5 to 0.2 (G17NP) and 0.7 (G19NP) µM against MRSA, and from 12.5 to 3.13 µM for E. coli O157:H7. Peptide loaded nanoparticles could be a bacteriostatic drug with potential application to treat these bacterial E. coli O157:H7 and MRSA infections, with a slow and gradual release.
更多
查看译文
关键词
nanoencapsulation,antimicrobial peptides,MRSA,E. coli O157:H7
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要