Comparative transcriptome and metabolomic profiling reveal the complex mechanisms underlying the developmental dynamics of tobacco leaves.

Genomics(2020)

引用 15|浏览14
暂无评分
摘要
Although the leaf is the most important photosynthetic organ in most plants, many of the molecular mechanisms underlying leaf developmental dynamics remain to be explored. To better understand the transcriptional regulatory mechanisms involved in leaf development, we conducted comparative transcriptomic and metabolomic analysis of leaves from seven positions on tobacco (Nicotiana tabacum) plants. A total of 35,622 unique differentially expressed genes and 79 metabolites were identified. A time-series expression analysis detected two interesting transcriptional profiles, one comprising 10,197 genes that displayed continual up-regulation during leaf development and another comprising 4696 genes that displayed continual down-regulation. Combining these data with co-expression network results identified four important regulatory networks involved in photorespiration and the tricarboxylic acid cycle; these networks may regulate carbon/nitrogen balance during leaf development. We also found that the transcription factor NtGATA5 acts as a hub associated with C and N metabolism and chloroplast development during leaf development through regulation of phytohormones. Furthermore, we investigated the transcriptional dynamics of genes involved in the auxin, cytokinin, and jasmonic acid biosynthesis and signaling pathways during tobacco leaf development. Overall, our study greatly expands the understanding of the regulatory network controlling developmental dynamics in plant leaves.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要