The Effect of Neural Net Architecture on Gradient Confusion & Training Performance

user-5f067cd14c775ed682f08e9a(2019)

引用 0|浏览24
暂无评分
摘要
The goal of this paper is to study why typical neural networks train so fast, and how neural network architecture affects the speed of training. We introduce a simple concept called gradient confusion to help formally analyze this. When confusion is high, stochastic gradients produced by different data samples may be negatively correlated, slowing down convergence. But when gradient confusion is low, data samples interact harmoniously, and training proceeds quickly. Through novel theoretical and experimental results, we show how the neural net architecture affects gradient confusion, and thus the efficiency of training. We show that increasing the width of neural networks leads to lower gradient confusion, and thus easier model training. On the other hand, increasing the depth of neural networks has the opposite effect. Finally, we observe empirically that techniques like batch normalization and skip connections reduce gradient confusion, which helps reduce the training burden of very deep networks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要