Viral Filtration Using Carbon‐Based Materials

Medical devices & sensors(2020)

引用 26|浏览19
暂无评分
摘要
Viral infections alone are a significant cause of morbidity and mortality worldwide and have a detrimental impact on global healthcare and socioeconomic development. The discovery of novel antiviral treatments has gained tremendous attention and support with the rising number of viral outbreaks. In this work, carbonaceous materials, including graphene nanoplatelets and graphene oxide nanosheets, were investigated for antiviral properties. The materials were characterised using scanning electron microscopy and transmission electron microscopy. Analysis showed the materials to be two-dimensional with lateral dimensions ranging between 1 - 4 µm for graphene oxide, 110 ± 0.11nm for graphene nanoplatelets. Antiviral properties were assessed against a DNA virus model microorganism at concentrations of 0.5, 1.0 and 2.0 wt/v%. Both carbonaceous nanomaterials exhibited potent antiviral properties and gave rise to a viral reduction of 100% across all concentrations tested. Graphene oxide nanosheets were then incorporated into polymeric fibres and their antiviral behaviour was examined after 3 and 24 hours. A viral reduction of 39% was observed after 24 hours of exposure. The research presented here showcases, for the first time, the antiviral potential of several carbonaceous nanomaterials, also included in a carrier polymer. These outcomes can be translated and implemented in many fields and devices to prevent viral spread and infection.
更多
查看译文
关键词
Antiviral,Graphene,Graphene Nanoplatelets,Graphene Oxide,Nanomaterials,Nanosheets
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要