Diamond Spins Shining Bright

semanticscholar(2014)

引用 5|浏览4
暂无评分
摘要
The quantum internet of the future could take many forms, but its core components will be quantum bits (qubits) that can store information and qubits that can carry information [1, 2]. Atom-sized defects in diamond called silicon vacancy centers are promising candidates as the storage component: they possess a single spin whose quantum state (such as a superposition between “up” and “down”) could encode information. This stored information can also be precisely imprinted on the light the defects emit when excited optically. Independent research groups led by Fedor Jelezko at Ulm University in Germany [3] and by Mete Atatüre at Cambridge University in the UK [4] have now measured the coherence time T2 of the spin on a negatively charged silicon vacancy (SiV) center, a key quantity determining how long the coherent superposition of up and down states can be maintained. Although the measured coherence time is only on the order of tens of nanoseconds (ns), a number of strategies exist to increase it to the point that SiV centers could be viable quantum internet components.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要