Testing small unmanned aerial vehicles and ground photography for erosion monitoring

Gareth McShane, Luke Farrow, Mike R. James, John N. Quinton,Karen Anderson,Martin Evans, Pia Benaud, Barry, Rawlins, David J. R. Morgan, Lee Jones, Matthew Kirkham, Leon DeBell, Timothy A. Quine, Murray Lark, Jane Rickson, Richard E. Brazier

semanticscholar(2017)

引用 0|浏览0
暂无评分
摘要
Quantifying the extent of soil erosion at a fine spatial resolution can be time consuming and costly; however, proximal remote sensing approaches to collect topographic data present an emerging alternative for quantifying soil volumes lost via erosion. Herein we compare terrestrial laser scanning (TLS), and both aerial (UAV) and ground-based (GP) SfM derived topography. We compare the costeffectiveness and accuracy of both SfM techniques to TLS for erosion gully surveying in upland landscapes, treating TLS as a benchmark. Further, we quantify volumetric soil loss estimates from upland gullies using digital surface models derived by each technique and subtracted from an interpolated pre-erosion surface. Soil loss estimates from UAV and GP SfM reconstructions were comparable to those from TLS, whereby the slopes of the relationship between all three techniques were not significantly different from 1:1 line. Only for the TLS to GP comparison the intercept was significantly different from zero, showing that GP is more capable of measuring the volumes of very small erosion features. In terms of cost-effectiveness in data collection and processing time, both UAV and GP were comparable with the TLS on a per-site basis (13.4 and 8.2 person-hours versus 13.4 for TLS); however GP was less suitable for surveying larger areas (127 person-hours per ha versus 4.5 for UAV and 3.9 for TLS). Annual repeat surveys using GP were capable of detecting mean vertical erosion change on peaty soils. These first published estimates of whole gully erosion rates (0.077 m a) suggest that combined erosion
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要