谷歌浏览器插件
订阅小程序
在清言上使用

Pulmonary , gastrointestinal and urogenital pharmacology Bradykinin-induced asthmatic fi broblast / myo fi broblast activities via bradykinin B 2 receptor and different MAPK pathways

semanticscholar(2013)

引用 0|浏览1
暂无评分
摘要
Bradykinin drives normal lung fibroblasts into myofibroblasts, induces fibroblast proliferation and activates mitogen activated protein kinase pathways (MAPK) but its effects on bronchial fibroblasts from asthmatics (HBAFb) have not been yet studied. We studied bradykinin-induced fibroblast proliferation and differentiation and the related intracellular mechanisms in HBAFb compared to normal bronchial fibroblasts (HNBFb). Bradykinin-stimulated HBAFb and HNBFb were used to assess: bradykinin B2 receptor expression by Western blot analysis; cell proliferation by [ H] thymidine incorporation; α-smooth muscle actin (SMA) expression/polymerization by Western blot and immunofluorescence; epidermal growth factor (EGF) receptor, extracellular-regulated kinase (ERK) 1/2 and p38 MAPK activation by immunoprecipitation and Western blot, respectively. Constitutive bradykinin B2 receptor and α-SMA expression was higher in HBAFb as compared to HNBFb. Bradykinin increased bradykinin B2 receptor expression in HBAFb. Bradykinin, via bradykinin B2 receptor, significantly increased fibroblast proliferation at lower concentration (10 M) and α-SMA expression/ polymerization at higher concentration (10 M) in both cells. Bradykinin increased ERK1/2 and p38 phosphorylation via bradykinin B2 receptor; EGF receptor inhibitor AG1478 and panmetalloproteinase inhibitor GM6001 blocked bradykinin-induced ERK1/2 activation but not p38 phosphorylation. Bradykinin, via bradykinin B2 receptor, induced EGF receptor phosphorylation that was suppressed by AG1478. In HBAFb AG1478, GM6001, the ERK1/2-inhibitor U0126 and the p38 inhibitor SB203580 suppressed bradykinininduced cell proliferation, but only SB203580 reduced myofibroblast differentiation. These data indicate that bradykinin is actively involved in asthmatic bronchial fibroblast proliferation and differentiation, throughMAPK pathways and EGF receptor transactivation, by which bradykinin may contribute to airway remodeling in asthma, opening new horizons for potential therapeutic implications in asthmatic patients. & 2013 Elsevier B.V. All rights reserved.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要