Molecular and Cellular Pathobiology Suppression of Deacetylase SIRT 1 Mediates Tumor-SuppressiveNOTCHResponse andOffers aNovel Treatment Option in Metastatic Ewing Sarcoma

semanticscholar(2014)

引用 0|浏览3
暂无评分
摘要
The developmental receptor NOTCH plays an important role in various human cancers as a consequence of oncogenic mutations. Here we describe a novel mechanism of NOTCH-induced tumor suppression involving modulation of the deacetylase SIRT1, providing a rationale for the use of SIRT1 inhibitors to treat cancers where this mechanism is inactivated because of SIRT1 overexpression. In Ewing sarcoma cells, NOTCH signaling is abrogated by the driver oncogene EWS-FLI1. Restoration of NOTCH signaling caused growth arrest due to activation of theNOTCHeffectorHEY1, directly suppressing SIRT1 and thereby activating p53. Thismechanismof tumor suppression was validated in Ewing sarcoma cells, B-cell tumors, and human keratinocytes where NOTCH dysregulation has been implicated pathogenically. Notably, the SIRT1/2 inhibitor Tenovin-6 killed Ewing sarcoma cells in vitro and prohibited tumor growth and spread in an established xenograft model in zebrafish. Using immunohistochemistry to analyze primary tissue specimens, we found that high SIRT1 expressionwas associated with Ewing sarcoma metastasis and poor prognosis. Our findings suggest a mechanistic rationale for the use of SIRT1 inhibitors being developed to treat metastatic disease in patients with Ewing sarcoma. Cancer Res; 74(22);
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要