Dual Role of Sb Ions as Electron Traps and Hole Traps in Photorefractive Sn2P2S6 Crystals

Brant E. Kananen, Eric M. Golden,Sergey A. Basun, A. A. Grabar, D. R. Evans, I. M. Stoika,John W. McClory,Nancy C. Giles, Larry E. Halliburton,B. E. KANANEN, E. M. GOLDEN,S. A. BASUN, D. R. EVANS, A. A. GRABAR, I. M. STOIKA,J. W. MCCLORY,N. C. GILES, L. E. HALLIBURTON

Optical Materials Express(2020)

引用 3|浏览2
暂无评分
摘要
Doping photorefractive single crystals of Sn2P2S6 with antimony introduces both electron and hole traps. In as-grown crystals, Sb (5s) ions replace Sn ions. These Sb ions are either isolated (with no nearby perturbing defects) or they have a chargecompensating Sn vacancy at a nearest-neighbor Sn site. When illuminated with 633 nm laser light, isolated Sb ions trap electrons and become Sb (5s5p) ions. In contrast, Sb ions with an adjacent Sn vacancy trap holes during illumination. The hole is primarily localized on the (P2S6) anionic unit next to the Sb ion and Sn vacancy. These trapped electrons and holes are thermally stable below ∼200 K, and they are observed with electron paramagnetic resonance (EPR) at temperatures below 150 K. Resolved hyperfine interactions with P, Sb, and Sb nuclei are used to establish the defect models. © 2016 Optical Society of America OCIS codes: (160.5320) Photorefractive materials; (190.5330) Photorefractive optics; (160.2260) Ferroelectrics; (160.6000) Semiconductor materials; (300.6470) Spectroscopy, semiconductors. References and links 1. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoyka, “Photorefraction in tin hypothiodiphosphate in the near infrared,” J. Opt. Soc. Am. B 13(10), 2352–2360 (1996). 2. A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1–4), 187–194 (2001). 3. M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Wavelength dependence of visible and near-infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. 22(11), 2459–2467 (2005). 4. M. Imlau, V. Dieckmann, H. Badorreck, and A. Shumelyuk, “Tin hypothiodiphosphate: nonlinear response in the sub-100 fs time domain,” Opt. Mater. Express 1(5), 953–961 (2011). 5. Y. Skrypka, A. Shumelyuk, S. Odoulov, S. Basun, and D. Evans, “Light-induced absorption and optical sensitizing of Sn2P2S6:Sb,” Opt. Commun. 356, 208–211 (2015). 6. A. Grabar, P. Mathey, and G. Gadret, “Manipulation of fast light using photorefractive beam fanning,” J. Opt. Soc. Am. B 31(5), 980–986 (2014). 7. P. Mathey, G. Gadret, A. Grabar, I. Stoika, and Y. Vysochanskii, “Photorefractive and photochromic effects in Sn2P2S6 at various temperatures,” Opt. Commun. 300, 90–95 (2013). 8. A. Grabar, P. Mathey, and R. Iegorov, “Coherent semilinear oscillator with Sn2P2S6:Sb crystals,” Appl. Phys. B 105(4), 813–819 (2011). 9. D. R. Evans, A. Shuymelyuk, G. Cook, and S. Odoulov, “Secondary photorefractive centers in Sn2P2S6:Sb crystals,” Opt. Lett. 36(4), 454–456 (2011). 10. I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Y. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008). 11. T. Bach, M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24(7), 1535– Vol. 6, No. 12 | 1 Dec 2016 | OPTICAL MATERIALS EXPRESS 3992 #279258 http://dx.doi.org/10.1364/OME.6.003992 Journal © 2016 Received 24 Oct 2016; revised 20 Nov 2016; accepted 22 Nov 2016; published 1 Dec 2016 1541 (2007). 12. A. T. Brant, L. E. Halliburton, S. A. Basun, A. A. Grabar, S. G. Odoulov, A. Shumelyuk, N. C. Giles, and D. R. Evans, “Photoinduced EPR study of Sb ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86(13), 134109 (2012). 13. S. A. Basun, L. E. Halliburton, and D. R. Evans are preparing a manuscript entitled “Hyperbolic decay of photogenerated Sb ions in Sn2P2S6 crystals detected with a novel electron paramagnetic resonance technique.” 14. E. M. Golden, S. A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoica, N. C. Giles, and L. E. Halliburton, “Sn vacancies in photorefractive Sn2P2S6 crystals: An electron paramagnetic resonance study of an optically active hole trap,” J. Appl. Phys. 120(13), 133101 (2016). 15. E. M. Golden, S. A. Basun, A. A. Grabar, I. M. Stoika, N. C. Giles, D. R. Evans, and L. E. Halliburton, “Sulfur vacancies in photorefractive Sn2P2S6 crystals,” J. Appl. Phys. 116(24), 244107 (2014). 16. A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn ions) in photorefractive Sn2P2S6 crystals,” J. Phys. Condens. Matter 25(20), 205501 (2013). 17. G. Dittmar and H. Schäfer, “Crystal structure of Sn2P2S6,” Z. Naturforsch. C 29b(5–6), 312–317 (1974). 18. K. Kuepper, B. Schneider, V. Caciuc, M. Neumann, A. V. Postnikov, A. Ruediger, A. A. Grabar, and Y. M. Vysochanskii, “Electronic structure of Sn2P2S6,” Phys. Rev. B 67(11), 115101 (2003). 19. K. Glukhov, K. Fedyo, J. Banys, and Y. Vysochanskii, “Electronic structure and phase transition in ferroelectic Sn2P2S6 crystal,” Int. J. Mol. Sci. 13(12), 14356–14384 (2012).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要