Multi-particle quantum-statistical correlation functions in a Hubble-expanding hadron gas

arxiv(2020)

引用 0|浏览7
暂无评分
摘要
Quantum-statistical correlation measurements in high-energy physics represent an important tool to obtain information about the space-time structure of the particle-emitting source. There are several final state effects which may modify the measured femtoscopic correlation functions. One of these may be the interaction of the investigated particles with the expanding hadron gas, consisting of the other final state particles. This may cause the trajectories - and hence the phases - of the quantum-correlated pairs to be modified compared to free streaming. The resulting effect and could be interpreted as an Aharonov-Bohm-like phenomenon, in the sense that the possible paths of a quantum-correlated pair represent a closed loop, with an internally present field caused by the hadron gas. In this paper, the possible role of the effect in heavy-ion experiments is presented with analytical calculations and a simple numerical model. The modification of the strength of multi-particle Bose-Einstein correlation functions is investigated, and the is found that in case of sufficiently large source density, this effect may play a non-negligible role.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要