Investigation of Sentiment Controllable Chatbot

arxiv(2020)

引用 0|浏览32
暂无评分
摘要
Conventional seq2seq chatbot models attempt only to find sentences with the highest probabilities conditioned on the input sequences, without considering the sentiment of the output sentences. In this paper, we investigate four models to scale or adjust the sentiment of the chatbot response: a persona-based model, reinforcement learning, a plug and play model, and CycleGAN, all based on the seq2seq model. We also develop machine-evaluated metrics to estimate whether the responses are reasonable given the input. These metrics, together with human evaluation, are used to analyze the performance of the four models in terms of different aspects; reinforcement learning and CycleGAN are shown to be very attractive.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要