谷歌浏览器插件
订阅小程序
在清言上使用

Line-Speed and Scalable Intrusion Detection at the Network Edge via Federated Learning

2020 IFIP Networking Conference (Networking)(2020)

引用 67|浏览176
暂无评分
摘要
Intrusion detection through classifying incoming packets is a crucial functionality at the network edge, requiring accuracy, efficiency and scalability at the same time, introducing a great challenge. On the one hand, traditional table-based switch functions have limited capacity to identify complicated network attack behaviors. On the other hand, machine learning based methods providing high accuracy are widely used for packet classification, but they typically require packets to be forwarded to an extra host and therefore increase the network latency. To overcome these limitations, in this paper we propose an architecture with programmable data plane switches. We show that Binarized Neural Networks (BNNs) can be implemented as switch functions at the network edge classifying incoming packets at the line speed of the switches. To train BNNs in a scalable manner, we adopt a federated learning approach that keeps the communication overheads of training small even for scenarios involving many edge network domains. We next develop a prototype using the P4 language and perform evaluations. The results demonstrate that a multi-fold improvement in latency and communication overheads can be achieved compared to state-of the-art learning architectures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要