Neural Architecture Search for Speech Recognition

arxiv(2020)

引用 6|浏览248
暂无评分
摘要
Deep neural networks (DNNs) based automatic speech recognition (ASR) systems are often designed using expert knowledge and empirical evaluation. In this paper, a range of neural architecture search (NAS) techniques are used to automatically learn two hyper-parameters that heavily affect the performance and model complexity of state-of-the-art factored time delay neural network (TDNN-F) acoustic models: i) the left and right splicing context offsets; and ii) the dimensionality of the bottleneck linear projection at each hidden layer. These include the standard DARTS method fully integrating the estimation of architecture weights and TDNN parameters in lattice-free MMI (LF-MMI) training; Gumbel-Softmax DARTS that reduces the confusion between candidate architectures; Pipelined DARTS that circumvents the overfitting of architecture weights using held-out data; and Penalized DARTS that further incorporates resource constraints to adjust the trade-off between performance and system complexity. Parameter sharing among candidate architectures was also used to facilitate efficient search over up to $7^{28}$ different TDNN systems. Experiments conducted on a 300-hour Switchboard conversational telephone speech recognition task suggest the NAS auto-configured TDNN-F systems consistently outperform the baseline LF-MMI trained TDNN-F systems using manual expert configurations. Absolute word error rate reductions up to 1.0% and relative model size reduction of 28% were obtained.
更多
查看译文
关键词
speech recognition,search,architecture
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要