谷歌浏览器插件
订阅小程序
在清言上使用

Super-enhancer-driven Metabolic Reprogramming Promotes Cystogenesis in Autosomal Dominant Polycystic Kidney Disease.

Nature metabolism(2020)

引用 18|浏览23
暂无评分
摘要
Metabolic reprogramming is emerging as a key pathological contributor to the progression of autosomal dominant polycystic kidney disease (ADPKD), but the molecular mechanisms underlying dysregulated cellular metabolism in cystic cells remain elusive. Super-enhancers (SEs) are large clusters of transcriptional enhancers that drive robust expression of cell identity and disease genes. Here, we show that SEs undergo extensive remodelling during cystogenesis and that SE-associated transcripts are most enriched for metabolic processes in cystic cells. Inhibition of cyclin-dependent kinase 7 (CDK7), a transcriptional kinase required for assembly and maintenance of SEs, or AMP deaminase 3 (AMPD3), one of the SE-driven and CDK7-controlled metabolic target genes, delays cyst growth in ADPKD mouse models. In a cohort of people with ADPKD, CDK7 expression was frequently elevated, and its expression was correlated with AMPD3 expression and disease severity. Together, our findings elucidate a mechanism by which SE controls transcription of metabolic genes during cystogenesis, and identify SE-driven metabolic reprogramming as a promising therapeutic target for ADPKD treatment.
更多
查看译文
关键词
Polycystic kidney disease,Transcription,Life Sciences,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要