Pharmacophore-Based Virtual Screening And Molecular Docking To Identify Promising Dual Inhibitors Of Human Acetylcholinesterase And Butyrylcholinesterase

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS(2021)

引用 38|浏览5
暂无评分
摘要
The dual inhibition of human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE) plays an important role in Alzheimer's disease treatment. Thus, this study aims identify promising dual inhibitors against hAChE and hBuChE byin silicoapproaches (pharmacophore-based virtual screening and molecular docking). Ten 3 D pharmacophore models for dual inhibitors using default genetic parameters were built by GALAHAD (TM) available on SYBYL-X 2.0. Validation steps were carried out according to Energy (<100.0 kcal/mol), Pareto = 0, Area under the ROC Curve (>0.70), Boltzmann-Enhanced Discrimination of ROC curve (BEDROC >0.50) and structure-activity relationship (SAR) for known inhibitors. The best dual pharmacophore model based on internal/external statistical parameters and SAR data (one hydrogen bond acceptor, two hydrogen bond donors and four hydrophobic centers) was employed in virtual screening at Sigma-Aldrich (R) subset (n = 214,446) of ZINC database by UNITY module of SYBYL-X 2.0. According to superposition values (QFIT), the best ranked compounds were prioritized for molecular docking and partition coefficient analysis (clogp < 5.0). 37 top-ranked compounds (QFIT > 64.22) from pharmacophore model showed affinity in hAChE (-10.2 < Affinity energy < -6.3 kcal/mol) and hBuChE (-10.9 < Affinity energy < -2.3 kcal/mol) binding sites. Next, liposolubity prediction and commercially available showed that ZINC43198636, ZINC43198637 and ZINC00390718 can be potential dual inhibitors against hAChE and hBuChE. Communicated by Ramaswamy H. Sarma
更多
查看译文
关键词
Alzheimer disease, dual inhibitor, human acetylcholinesterase, human butyrylcholinesterase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要