谷歌浏览器插件
订阅小程序
在清言上使用

Tissue-engineered human embryonic stem cell-containing cardiac patches: evaluating recellularization of decellularized matrix.

JOURNAL OF TISSUE ENGINEERING(2020)

引用 23|浏览11
暂无评分
摘要
Decellularized cardiac extracellular matrix scaffolds with preserved composition and architecture can be used in tissue engineering to reproduce the complex cardiac extracellular matrix. However, evaluating the extent of cardiomyocyte repopulation of decellularized cardiac extracellular matrix scaffolds after recellularization attempts is challenging. Here, we describe a unique combination of biochemical, biomechanical, histological, and physiological parameters for quantifying recellularization efficiency of tissue-engineered cardiac patches compared with native cardiac tissue. Human embryonic stem cell-derived cardiomyocytes were seeded into rat heart atrial and ventricular decellularized cardiac extracellular matrix patches. Confocal and atomic force microscopy showed cell integration within the extracellular matrix basement membrane that was accompanied by restoration of native cardiac tissue passive mechanical properties. Multi-electrode array and immunostaining (connexin 43) were used to determine synchronous field potentials with electrical coupling. Myoglobin content (similar to 60%) and sarcomere length measurement (>45% vs 2D culture) were used to evaluate cardiomyocyte maturation of integrated cells. The combination of these techniques allowed us to demonstrate that as cellularization efficiency improves, cardiomyocytes mature and synchronize electrical activity, and tissue mechanical/biochemical properties improve toward those of native tissue.
更多
查看译文
关键词
Decellularized extracellular matrix,cardiomyocytes,recellularization efficiency,mechanical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要