Efficient up-conversion photoluminescence in all-inorganic lead halide perovskite nanocrystals

Nano Research(2020)

引用 30|浏览14
暂无评分
摘要
Up-conversion photoluminescence (UCPL) refers to the elementary process where low-energy photons are converted into high-energy ones via consecutive interactions inside a medium. When additional energy is provided by internal thermal energy in the form of lattice vibrations (phonons), the process is called phonon-assisted UCPL. Here, we report the exceptionally large phonon-assisted energy gain of up to ~ 8 k B T ( k B is Boltzmann constant, T is temperature) on all-inorganic lead halide perovskite semiconductor colloidal nanocrystals that goes beyond the maximum capability of only harvesting optical phonon modes. By systematic optical study in combination with a statistical probability model, we explained the nontrivial phonon-assisted UCPL process in perovskites nanocrystals, where in addition to the strong electron-phonon (light-matter) coupling, other nonlinear processes such as phonon-phonon (matter-matter) interaction also effectively boost the up-conversion efficiency.
更多
查看译文
关键词
up-conversion photoluminescence,phonons,lead halide perovskite,colloidal nanocrystals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要